To automate the writing of solutions for a series of small puzzles involving wooden blocks, you need to implement the method "Solve" in C#. This method should determine the order in which the blocks are taken out of the game, without colliding.
The "Solve" method takes four parameters:
1. "width": the width of the puzzle, represented by the number of cells.
2. "height": the height of the puzzle, represented by the number of cells.
3. "nbBlocks": the number of blocks initially present in the puzzle.
4. "grid": a list of strings, with each string representing a row in the puzzle. Each character in the grid represents a square in the puzzle and can have one of the following values:
- "." (a dot): an empty square.
- "X": a wall that cannot be moved.
- An integer between 0 and "nbBlocks-1": a square occupied by a block. The same number can be present several times in the grid, representing a single block that extends over multiple squares.
The output of the "Solve" method should be an integer between 0 and "nbBlocks-1", representing the number of the block you want to move to the right next.
Here's a step-by-step approach to implement the "Solve" method:
1. Iterate over each block number from 0 to "nbBlocks-1".
2. For each block number, check if it is present in the grid.
3. If the block is present, determine if it can be moved to the right without colliding with any other blocks.
4. If the block can be moved to the right without colliding, return the block number as the output.
5. If no block can be moved to the right without colliding, return a default value (e.g., -1) to indicate that no valid move is possible.
Let's consider an example to understand this process better:
Suppose we have a puzzle with a width of 4, height of 3, and 3 blocks initially present. The grid representation is as follows:
X12.
..X2
.3..
In this case, we start by checking block number 0. As it is not present in the grid, we move on to block number 1. Block number 1 is present in the grid, but it cannot be moved to the right without colliding with block number 2. Finally, we check block number 2, which can be moved to the right without colliding. Therefore, the output of the "Solve" method in this case would be 2.
Remember to handle any edge cases and constraints mentioned in the question, such as the width and height limits, the number of blocks, and ensuring that all blocks are eventually moved out of the game.
```csharp
using System;
using System.Collections.Generic;
class BlockPuzzleSolver
{
public int Solve(int width, int height, int nbBlocks, List<string> grid)
{
// Parcourir chaque numéro de bloc de 0 à nbBlocks-1
for (int blockNumber = 0; blockNumber < nbBlocks; blockNumber++)
{
// Vérifier si le bloc est présent dans la grille
bool blockPresent = false;
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (grid[row][col] == blockNumber.ToString()[0])
{
blockPresent = true;
break;
}
}
if (blockPresent)
break;
}
// Si le bloc est présent, vérifier s'il peut être déplacé vers la droite sans collision
if (blockPresent)
{
bool canMoveRight = true;
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (grid[row][col] == blockNumber.ToString()[0])
{
// Vérifier la case à droite
if (col + 1 < width && grid[row][col + 1] != '.' && grid[row][col + 1] != blockNumber.ToString()[0])
{
canMoveRight = false;
break;
}
}
}
if (!canMoveRight)
break;
}
// Si le bloc peut être déplacé vers la droite sans collision, retourner le numéro du bloc
if (canMoveRight)
return blockNumber;
}
}
// Si aucun bloc ne peut être déplacé vers la droite sans collision, retourner -1
return -1;
}
}
class Program
{
static void Main(string[] args)
{
BlockPuzzleSolver solver = new BlockPuzzleSolver();
// Exemple d'utilisation
int width = 5;
int height = 5;
int nbBlocks = 2;
List<string> grid = new List<string>
{
"X000X",
"X..0X",
"XXXXX",
".....",
"....."
};
int nextBlockToMove = solver.Solve(width, height, nbBlocks, grid);
Console.WriteLine("Next block to move: " + nextBlockToMove);
}
}
```
Cette implémentation parcourt chaque numéro de bloc, vérifie s'il est présent dans la grille, puis détermine s'il peut être déplacé vers la droite sans collision. Si un tel bloc est trouvé, son numéro est renvoyé en tant que sortie de la méthode "Solve". Si aucun bloc ne peut être déplacé vers la droite sans collision, la méthode renvoie -1.